

M1: CO₂ evolution in cave atmospheres: new insights, concerns and mitigation strategies

François Bourges¹, Dominique Genty², Bruno Lartiges³, Frédéric Perrier⁴, Frédéric Girault⁴, Rémi Losno⁴, Alexandre François⁵, Johann Leplat⁵, Stephanie Touron⁵, Faisl Bousta⁵, Stéphane Tocino⁶

¹Géologie Environnement Conseil, 30 rue de la République, F-09200 Saint-Girons, France; ²Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex, France; ³University of Toulouse III (Paul Sabatier), Geosciences Environnement Toulouse (UMR 7 CNRS-UPS-IRD), 14 Av. E. Belin, 31400 Toulouse, France; ⁴Institut de Physique du Globe de Paris, Université Paris Diderot, 1 rue Jussieu, F-75005 Paris, France; ⁵Laboratoire de Recherches sur les Monuments Historiques, Ministère de la Culture, 29 rue de Paris, F-77420 Champs-sur-Marne, France; 6Site de l'Aven d'Orgnac F-07150 Vallon-Pont d'Arc, France

There are growing concerns about CO₂ concentration upward drifts in cave atmospheres as many sites are affected by worrying levels of CO₂ concentration for human safety and underground patrimony preservation. In some cases, speleological and touristic activities and some scientific operations have been restricted and could be prevented by further increase in CO₂ concentration. Unprecedented situations occurred in southern France at two neighboring sites monitored for CO₂ since 1997: In June 2016, CO₂ concentrations in the Aven d'Orgnac reached the safety level of 3% Vol., whereas in September 2017, after 5 years of rise, the CO₂ topped at 4.4% in the Chauvet-Pont d'Arc cave rear room.

In the Aven d'Orgnac tourist cave, CO_2 % atmosphere variations are controlled by ventilation regimes. During the hot season, some air is drained from the karst porosity (2.5 to 3 %Vol. CO_2 in the visited rooms, and 3 to 5% in remote networks) and fills the cave. During the cold season, ventilation switches to a density driven regime: mixing with outside air falling from the upper entrance dilutes the CO_2 concentration (<0.5%).

In the Chauvet cave, permanent confinement has preserved the 360 centuries old rock art. Two stable compartments with contrasted compositions (an average 2.2% CO₂ concentration in the main volume, and an average 3.4% CO₂ concentration in the rear room) are subject to smooth, 1.6 to 2% in amplitude, annual sinusoidal variations.

Recent work showed that high CO₂ concentration is associated with low water excess periods and that infiltration in the upper karst control the gas fluxes in the cave volume. However, the long-term upward drift can also be attributed to increasing carbon stock in soil and epikarst due to growing vegetation density in earlier decades.

The remediation in the Orgnac visited sector has consisted in an artificial ventilation circulation that mimics the winter regime. The set point value of 0.5% CO₂ for diluted extracted air was optimized with a 3 000 to 5 000 m³/h flux. Until now, the monitoring has revealed that the original thermo-hygrometric conditions are preserved. In Chauvet cave, neither ventilation nor hydrological conditions can possibly be modified. Critical situations could be triggered by long lasting droughts expected in the Mediterranean climate foreseeable evolution. Only the vegetal cover could be a factor of control pending confirmation of the preliminary results.

M2: Stalactite drip rate variations in French Caves: causes and interest for karstic reservoir knowledge

Dominique Genty¹, Bourges François², Jossoud Olivier³, Labhun Inga³, Zhang Jian¹, Devaux Ludovic¹, Bujan Stephane¹, Perrier Frédéric⁴, Girault Frédéric⁴, Lartiges Bruno⁵, Bonnet Stéphane⁵, Regard Vincent⁵, Minster Bénédicte³, Regnier Edouard³

¹Environnement et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR 5805, Université de Bordeaux, CNRS, France; ²Géologie Environnement Conseil, 30 rue de la République, F-09200 Saint-Girons, France; ³Laboratoire des Sciences du Climat et de l'Environnement (LSCE), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay; ⁴Institut de Physique du Globe de Paris, Université de Paris, 1 rue Jussieu, F-75005 Paris, France; ⁵Université de Toulouse III Paul Sabatier, Géosciences Environnement-Toulouse, 14 av. Edouard Belin, F-31400 Toulouse, France

Stalactite dripping time series, originally set up in order to better understand the stalagmite growth environment in relationships with paleoclimatologic studies, appear to be a source of valuable information on infiltration and recharge processes in micro-fissured karstic terrains. The synthesis of several years long monitoring (drip number/15 min) from 25 drippings stations in ten different caves have been compared with local meteorological data, revealing common causes of dripping pacing at different time scale: rainfall (RR) and evapotranspiration (ETP) constrain seasonal and monthly-weekly drip rate variations while atmospheric air pressure controls daily-hours scale drip variations. More precisely, we observed the following:

- 1) RR minus ETP baseline displays a well-marked seasonality that is the precursor of the dripping yearly seasonality;
- 2) water excess (or efficient rainfall) explains monthly-weekly drip rate variations during humid period with more or less delay of the order of 1-2 days;
- 3) large atmospheric air pressure changes linked to atmospheric circulation controls daily scale drip variations;